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Lecture Three: Microcontroller Hardware 

In Program 3.1 the assumption was the software module had access to all of Port F. In other words, 

this software owned all pins of Port F. The TM4C123 Port F has only 5 pins, and we used them 

all. In most cases, a software module needs access to only some of the port pins. If two or more 

software modules access the same port, a conflict will occur if one module changes modes or 

output values set by another module. It is good software design to write friendly software, which 

only affects the individual pins as needed. Friendly software does not change the other bits in a 

shared register. The Texas Instruments mechanism allows collective access to 0 to 8 bits in a data 

port. We define eight address offset constants in Table 3.6. 

 

Table 3.6. Address offsets used to specify individual data port bits. 

There 256 possible bit combinations we might be interested in accessing, from all of them to none 

of them. Each possible bit combination has a separate address for accessing that combination. For 

each bit we are interested in, we add up the corresponding constants from Table 3.6 and then add 

that sum to the base address for the port. The base addresses for the data ports for each 

microcontroller can be found in its data sheet; open the data sheet for your microcontroller, go to 

the GPIO chapter, Register Descriptions section, and search for GPIODATA. Figure 3.14 shows 

a snapshot of the TM4C123 data sheet, illustrating the base address for Port A is 0x4000.4000. 

For example, assume we are interested in Port A bits 1, 2, and 3 on the TM4C123. We look up the 

constants for bits 1, 2, 3 in Table 3.6, which are 0x0008, 0x0010, and 0x0020. The sum of 

0x4000.4000 + 0x0008 + 0x0010 + 0x0020 is the address 0x4000.4038. If we read from 

0x4000.4038 only bits 1, 2, and 3 will be returned. If we write to this address only bits 1, 2, and 3 

will be modified. 
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Figure 3.14. Snapshot of the TM4C123 data sheet, showing how to look up GPIO base addresses. 

4.2.2. Switch Inputs and LED Outputs 

There are four ways to interface a switch to the microcontroller as shown in Figure 4.15. 

 

Figure 3.15. Interface of a switch to a microcomputer input. 
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We can use either positive or negative logic, and we can use an external resistor or select an internal 

resistor. Notice the positive logic circuit with external resistor is essentially the same as the positive 

logic circuit with internal resistance; the difference lies with whether the pull-down resistor is 

connected externally as a 10 kΩ resistor or internally by setting the corresponding PDR bit during 

software initialization. 

In all cases we will initialize the pin as an input. The initialization function will enable the clock, 

clear the direction register bit to specify input, and enable the pin. In Program 3.2, we will interface 

PA5 to a switch using an external resistor and positive logic. Notice the software is friendly 

because it just affects PA5 without affecting the other bits in Port A. The input function reads Port 

A and returns a true (0x20) if the switch is pressed and returns a false (0) if the switch is not 

pressed. The first function uses the bit-specific address to get just PA5, while the second reads the 

entire port and selects bit 5 using a logical AND. 
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Example 4.3: Design an embedded system that flashes LEDs in a 0101, 0110, 1010, 1001 binary 

repeating pattern. 

Solution: This system will need four LEDs, and the computer must be able to activate/deactivate 

them. In this lecture, we will constrain all our designs to include a TM4C microcontroller. Because 

we have +3.3 V microcontroller systems, we will specify the system to run on +3.3 V power. We 

have in stock HLMP-4740 green LEDs that operate at 1.9 V and 2 mA, so we will use them.  

The data flow graph in Figure 3.19 shows information as it flows from the controller software to 

the four LEDs. The data flow graph will be important during the subsequent design phases because 

the hardware blocks can be considered as a preliminary hardware block diagram of the system. 

The call graph, also shown in Figure 3.19, illustrates this master/slave configuration where the 

controller software will manipulate the four LEDs. The hardware design of this system could have 

used four copies of the LED interface presented earlier in Figure 3.9. The TM4C microcontroller 

can source or sink up to 8 mA. We can save money by using low-current LEDs, which can be 

connected directly to the microcontroller without a driver. 

 

Figure 3.19. Data flow graph and call graph of the LED output system. 

Figure 3.20 shows four simple negative logic LED interfaces. A low output will turn on the LED, 

and a high output will turn it off. Notice the similarity of the data flow graph in Figure 3.19 with 

the hardware circuit in Figure 3.20.  

 

Figure 3.20. Hardware circuit for the LED output system. 
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The only data required in this problem is the 5–6–10–9 sequence. To output the negative logic 

pattern 1010 to the LEDs, we will output a 5 to the bottom 4 bits of Port D on the TM4C 

microcontroller. The LEDS definition implements friendly access to pins PD3 – PD0. 

 

   

Program 3.5. C software for the LED output system. 

 



 

51 
 

2.3. Phase-Lock-Loop 

Normally, the execution speed of a microcontroller is determined by an external crystal. The Stellar 

is EKK-LM3S1968 evaluation board has an 8 MHz crystal. The Texas Instruments Tiva 

EKLM4F120XL, EK-TM4C123GXL, and EK-TM4C1294-XL boards have a 16 MHz crystal. 

Most microcontrollers have a phase-lock-loop (PLL) that allows the software to adjust the 

execution speed of the computer. Typically, the choice of frequency involves the tradeoff between 

software execution speed and electrical power. In other words, slowing down the bus clock will 

require less power to operate and generate less heat. Speeding up the bus clock obviously allows 

for more calculations per second. 

The default bus speed of the LM3S1968 and TM4C microcontrollers is that of the internal 

oscillator, also meaning that the PLL is not initially active. For example, the default bus speed for 

the LM3S1968 kit is 12 MHz ±30%. The default bus speed for the TM4C internal oscillator is 16 

MHz ±1%. The internal oscillator is significantly less precise than the crystal, but it requires less 

power and does not need an external crystal. This means for most applications we will activate the 

main oscillator and the PLL so we can have a stable bus clock. 

There are two ways to activate the PLL. We could call a library function, or we could access the 

clock registers directly. In general, using library functions creates a better design because the 

solution will be more stable (less bugs) and will be more portable (easier to switch 

microcontrollers). 

First, we can include the Stellaris/Tiva library and call the SysCtlClockSet function to change the 

speed. This function is defined in the sysctl.c file. Assume we wish to run an LM3S with an 8 

MHz crystal at 50 MHz. The desired bus speed is set by the SYSCTL_SYSDIV_4 parameter, 

which in this case will be 200 MHz divided by 4. The library function activates the PLL because 

of the SYSCTL_USE_PLL parameter. The main oscillator is the one with the external crystal 

attached. The last parameter specifies the frequency of the attached crystal. 

SysCtlClockSet ( SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | 

SYSCTL_OSC_MAIN | SYSCTL_XTAL_8MHZ); 

Assume we wish to run an LM3S microcontroller with a 6 MHz crystal at 20 MHz. The divide by 

10 reduces the 200 MHz base frequency to 20 MHz. 

SysCtlClockSet( SYSCTL_SYSDIV_10 | SYSCTL_USE_PLL | 

SYSCTL_OSC_MAIN | SYSCTL_XTAL_6MHZ); 
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Assume we wish to run an TM4C with a 16 MHz crystal at 80 MHz. The divide by 2.5 creates a 

bus frequency of 80 MHz, implemented as 400 MHz divided by 5. 

SysCtlClockSet( SYSCTL_SYSDIV_2_5 | SYSCTL_USE_PLL | 

SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ); 

 

Figure 3.23. Block diagram of the main clock tree on the TM4C123 including the PLL. 

To make our code more portable, it is a good idea to use library functions whenever possible. 

However, we will present an explicit example illustrating how the PLL works. An external crystal 

is attached to the TM4C microcontroller, as shown in Figure 3.23. The PLLs on the other Stellari 

s/ Tiva microcontrollers operate in the same basic manner. Table 3.9 shows the clock registers 

used to define what speed the processor operates. The output of the main oscillator (Main Osc) is 

a clock at the same frequency as the crystal. By setting the OSCSRC bits to 0, the multiplexer 

control will select the main oscillator as the clock source. 

Program 3.6 shows a program to activate a microcontroller with a 16 MHz main oscillator to run 

at 80 MHz. 0) Use RCC2 because it provides for more options. 1) The first step is set BYPASS2 

(bit 11). At this point the PLL is bypassed and there is no system clock divider. 2) The second step 

is to specify the crystal frequency in the four XTAL bits using the code in Table 3.9. The 

OSCSRC2 bits are cleared to select the main oscillator as the oscillator clock source. 3) The third 

step is to clear PWRDN2 (bit 13) to activate the PLL. 4) The fourth step is to configure and enable 

the clock divider using the 7-bit SYSDIV2 field. If the 7-bit SYSDIV2 is n, then the clock will be 

divided by n+1. To get the desired 80 MHz from the 400 MHz PLL, we need to divide by 5. So, 

we place a 4 into the SYSDIV2 field. 5) The fifth step is to wait for the PLL to stabilize by waiting 
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for PLLRIS (bit 6) in the SYSCTL_RIS_R to become high. 6) The last step is to connect the PLL 

by clearing the BYPASS2 bit. To modify this program to operate on other microcontrollers, you 

will need to change the crystal frequency and the system clock divider. Program 3.6 is on the book 

web site as PLL_xxx.zip. 

 

Table 3.9a. XTAL field used in the SYSCTL_RCC_R register of the TM4C123. 

 

Table 3.9b. Main clock registers for the TM4C123. 

#define SYSDIV2 4 

void PLL_Init(void){ 

// 0) Use RCC2 

SYSCTL_RCC2_R |= 0x80000000; // USERCC2 

// 1) bypass PLL while initializing 

SYSCTL_RCC2_R |= 0x00000800; // BYPASS2, PLL bypass 

// 2) select the crystal value and oscillator source 

SYSCTL_RCC_R = (SYSCTL_RCC_R & ~0x000007C0) // clear bits 10-6 

+ 0x00000540; // 10101, configure for 16 MHz crystal 

SYSCTL_RCC2_R &= ~0x00000070; // configure for main oscillator source 

// 3) activate PLL by clearing PWRDN 

SYSCTL_RCC2_R &= ~0x00002000; 

// 4) set the desired system divider 

SYSCTL_RCC2_R |= 0x40000000; // use 400 MHz PLL 
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SYSCTL_RCC2_R = (SYSCTL_RCC2_R&~0x1FC00000)+(SYSDIV2<<22); // 80 MHz 

// 5) wait for the PLL to lock by polling PLLLRIS 

while((SYSCTL_RIS_R&0x00000040)==0){}; // wait for PLLRIS bit 

// 6) enable use of PLL by clearing BYPASS 

SYSCTL_RCC2_R &= ~0x00000800; 

} 

Program 3.6a. Activate the TM4C123 with a 16 MHz crystal to run at 80 MHz (PLL_xxx.zip). 

 

4.4. SysTick Timer 

SysTick is a simple counter that we can use to create time delays and generate periodic interrupts. 

It exists on all Cortex -M microcontrollers, so using SysTick means the system will be easy to port 

to other microcontrollers. Table 3.10 shows some of the register definitions for SysTick. The basis 

of SysTick is a 24-bit down counter that runs at the bus clock frequency. There are four steps to 

initialize the SysTick timer. First, we clear the ENABLE bit to turn off SysTick during 

initialization. Second, we set the RELOAD register. Third, we write to the 

NVIC_ST_CURRENT_R value to clear the counter. Lastly, we write the desired mode to the 

control register, NVIC_ST_CTRL_R . We set the CLK_SRC bit specifying the core clock will 

be used. We must set CLK_SRC=1, because CLK_SRC=0 external clock mode is not 

implemented on the LM3S/TM4C family. We will set INTEN to enable interrupts, but in this first 

example we clear INTEN so interrupts will not be requested. We need to set the ENABLE bit so 

the counter will run. When the CURRENT value counts down from 1 to 0, the COUNT flag is 

set. On the next clock, the CURRENT is loaded with the RELOAD value. In this way, the 

SysTick counter (CURRENT) is continuously decrementing. If the RELOAD value is n, then the 

SysTick counter operates at modulo n+1 (…n, n-1, n-2 … 1, 0, n, n- 1 …). In other words, it rolls 

over every n+1 counts. The COUNT flag could be configured to trigger an interrupt. However, in 

this first example interrupts will not be generated. 

 

Table 3.10. SysTick registers. 

If we activate the PLL to run the microcontroller at 80 MHz, then the SysTick counter decrements 

every 12.5 ns. In general, if the period of the core bus clock is t, then the COUNT flag will be set 
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every (n+1) t. Reading the NVIC_ST_CTRL_R control register will return the COUNT flag in 

bit 16 and then clear the flag. Also, writing any value to the NVIC_ST_CURRENT_R register 

will reset the counter to zero and clear the COUNT flag. 

Program 3.7 uses the SysTick timer to implement a time delay. For example, the user calls 

SysTick_Wait10ms (123); and the function returns 1.23 seconds later. The RELOAD register is 

set to the number of bus cycles one wishes to wait. If the PLL function of Program 3.6 has been 

executed, then the units of this delay will be 12.5 ns. Writing to CURRENT will clear the counter 

and will clear the count flag (bit 16) of the CTRL register. After SysTick has been decremented 

delay times, the count flag will be set and the while loop will terminate. Since SysTick is only 24 

bits, the maximum time one can wait with SysTick_Wait is 224*12.5ns, which is about 200 ms. 

To provide for longer delays, the function SysTick_Wait10ms calls the function SysTick_Wait 

repeatedly. Notice that 800,000*12.5ns is 10ms.  

void SysTick_Init(void){ 

NVIC_ST_CTRL_R = 0; // 1) disable SysTick during setup 

NVIC_ST_RELOAD_R = 0x00FFFFFF; // 2) maximum reload value 

NVIC_ST_CURRENT_R = 0; // 3) any write to current clears it 

NVIC_ST_CTRL_R = 0x00000005; // 4) enable SysTick with core clock 

} 

// The delay parameter is in units of the 80 MHz core clock. (12.5 ns) 

void SysTick_Wait(uint32_t delay){ 

NVIC_ST_RELOAD_R = delay-1; // number of counts to wait 

NVIC_ST_CURRENT_R = 0; // any value written to CURRENT clears 

while((NVIC_ST_CTRL_R&0x00010000)==0){ // wait for count flag 

} 

} // 10000us equals 10ms 

void SysTick_Wait10ms(uint32_t delay){ 

uint32_t i; 

for(i=0; i<delay; i++){ 

SysTick_Wait(800000); // wait 10ms 

} 

} 

Program 3.7a. Timer functions that implement a time delay (SysTick_xxx.zip). 


