Lecture Three: Microcontroller Hardware

In Program 3.1 the assumption was the software module had access to all of Port F. In other words,
this software owned all pins of Port F. The TM4C123 Port F has only 5 pins, and we used them
all. In most cases, a software module needs access to only some of the port pins. If two or more
software modules access the same port, a conflict will occur if one module changes modes or
output values set by another module. It is good software design to write friendly software, which
only affects the individual pins as needed. Friendly software does not change the other bits in a
shared register. The Texas Instruments mechanism allows collective access to 0 to 8 bits in a data

port. We define eight address offset constants in Table 3.6.

If we wish to access bit | Constant

7 0x0200
6 0x0100
5 0x0080
1
4 0x0040
3 0x0020
2 0x0010
1 0x0008
0 0x0004

Table 3.6. Address offsets used to specify individual data port bits.

There 256 possible bit combinations we might be interested in accessing, from all of them to none
of them. Each possible bit combination has a separate address for accessing that combination. For
each bit we are interested in, we add up the corresponding constants from Table 3.6 and then add
that sum to the base address for the port. The base addresses for the data ports for each
microcontroller can be found in its data sheet; open the data sheet for your microcontroller, go to
the GPI1O chapter, Register Descriptions section, and search for GPIODATA. Figure 3.14 shows
a snapshot of the TM4C123 data sheet, illustrating the base address for Port A is 0x4000.4000.
For example, assume we are interested in Port A bits 1, 2, and 3 on the TM4C123. We look up the
constants for bits 1, 2, 3 in Table 3.6, which are 0x0008, 0x0010, and 0x0020. The sum of
0x4000.4000 + 0x0008 + 0x0010 + 0x0020 is the address 0x4000.4038. If we read from
0x4000.4038 only bits 1, 2, and 3 will be returned. If we write to this address only bits 1, 2, and 3
will be modified.
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Figure 3.14. Snapshot of the TM4C123 data sheet, showing how to look up GPIO base addresses.
4.2.2. Switch Inputs and LED Outputs
There are four ways to interface a switch to the microcontroller as shown in Figure 4.15.
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Figure 3.15. Interface of a switch to a microcomputer input.
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We can use either positive or negative logic, and we can use an external resistor or select an internal
resistor. Notice the positive logic circuit with external resistor is essentially the same as the positive
logic circuit with internal resistance; the difference lies with whether the pull-down resistor is
connected externally as a 10 kQ resistor or internally by setting the corresponding PDR bit during
software initialization.

In all cases we will initialize the pin as an input. The initialization function will enable the clock,
clear the direction register bit to specify input, and enable the pin. In Program 3.2, we will interface
PA5 to a switch using an external resistor and positive logic. Notice the software is friendly
because it just affects PA5 without affecting the other bits in Port A. The input function reads Port
A and returns a true (0x20) if the switch is pressed and returns a false (0) if the switch is not
pressed. The first function uses the bit-specific address to get just PA5, while the second reads the
entire port and selects bit 5 using a logical AND.

PAS EQU 0x40004080 Switch_Init #define PAS (*((volatile uint32 _t *)0x40004080))

LDR R1,-SYSCTL RCGCGPIO R
LDR RO, [R1]

ORR RO, RO, #0x01

STR RO, [R1] ; Port A clock

NOP : time for clock to finish NOP
LDR RI, “GPIO PORTA DIR R
LDR RO, [R1]

BIC RO, #0x20 ; PAS input

STR RO, [R1]

LDR R1,=GPIO PORTA DEN R

LDR RO, [R1]

ORR RO, #0x20 ; 7) digital
[R1] : onPAS

BX LR

Switch _Input

LDR RI, =“PAS ; 0x40004080
LDR RO, [R1] ; read just PAS

BX LR : 0x20 or 0x00
Switch_Input2

LDR RI1, = GPIO PORTA DATA R
LDR RO, [R1] : read port

AND RO, #0x20 ; just bit 5

BX LR ; 0x20 or 0x00

STR RO,

void Switch _Init(veid){

SYSCTL _RCGCGPIO R [~ 0x01:

/1'1) activate clock for Port A
while((SYSCTL _PRGPIO R&0x01) == 0)
{}; // ready?
/1 2) no need to unlock GPIO Port A
GPIO PORTA DIR R &=-0x20;
/' 5) direction PAS input

GPIO PORTA DEN R =0x20:

// ' 7) enable PAS digital port
H

// veturn 0x20(pressed)

/I or O(not pressed)

uint32_t Switch_Input(void){
return PAS:

H

// return 0x20(pressed)

/[ or O(not pressed)

uint32 t Switch_Input2(void){
return (GPIO_PORTA DATA R&0x20): )

Program 4.2. Software interface for a switch on PAS (Switch xxx.zip).
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Example 4.3: Design an embedded system that flashes LEDs in a 0101, 0110, 1010, 1001 binary
repeating pattern.

Solution: This system will need four LEDs, and the computer must be able to activate/deactivate
them. In this lecture, we will constrain all our designs to include a TM4C microcontroller. Because
we have +3.3 V microcontroller systems, we will specify the system to run on +3.3 VV power. We
have in stock HLMP-4740 green LEDs that operate at 1.9 V and 2 mA, so we will use them.

The data flow graph in Figure 3.19 shows information as it flows from the controller software to
the four LEDs. The data flow graph will be important during the subsequent design phases because
the hardware blocks can be considered as a preliminary hardware block diagram of the system.
The call graph, also shown in Figure 3.19, illustrates this master/slave configuration where the
controller software will manipulate the four LEDs. The hardware design of this system could have
used four copies of the LED interface presented earlier in Figure 3.9. The TM4C microcontroller
can source or sink up to 8 mA. We can save money by using low-current LEDs, which can be

connected directly to the microcontroller without a driver.

DataFlow Graph Digital  Cument CallG raph
Patiem —|Inferface | LED 3
5.6,10,9
0 utput — | Inferface |—> LED2
port
—»|Interface LED1 I 0 utputport l
—>|In‘erface [~ LED 0 [LEps|[Lep2|[LED1|[LEDO]

Figure 3.19. Data flow graph and call graph of the LED output system.
Figure 3.20 shows four simple negative logic LED interfaces. A low output will turn on the LED,
and a high output will turn it off. Notice the similarity of the data flow graph in Figure 3.19 with

the hardware circuit in Figure 3.20.
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Figure 3.20. Hardware circuit for the LED output system.
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The only data required in this problem is the 5-6-10-9 sequence. To output the negative logic
pattern 1010 to the LEDs, we will output a 5 to the bottom 4 bits of Port D on the TM4C

microcontroller. The LEDS definition implements friendly access to pins PD3 — PDO.

#define LEDS (*((volatile uint32 t *)0x4000703C))

LEDS EQU 0x4000703C

GPIO Init /1 C imple mentation

LDR R1,=SYSCTL RCGCGPIO R  Void GPIO_Init(void){

LDR RO, [R1] ; 1) D clock /1 1) Port D clock

ORR RO, R0, #0x00000008 SYSCTL RCGCGPIO R |- 0x08;

STR RO, [R1] while((SYSCTL_PRGPIO_R&0x08) == 0)
NOP ; time to finish {13/ ready?

NOP ; 2) no need to unlock

// 2) no need to unlock PD3-0
LDR R1,=GPIO PORTD DIR R

LDR RO, [R1] ;5) direction /I'S) PD3-0 outputs

ORR RO, R0,#0x0F ; PD3-0 output GPIO_PORTD DIR R |- 0x0F;
STR RO, [R1] // 7 digital VO on PD3-0

LDR R1, =GPIO PORTD DEN R GPIO PORTD DEN R [ 0x0F:

LDR RO, [R1]
h
void main(void){
GPIO_Init();

while(1){

ORR RO, RO, #0x0F ; LEDS =10; // 1010
7)PD3-0 digital LEDS =9; /1001
STR RO, [R1] LEDS =5; // 0101
BX LR LEDS =6; // 0110
Start BL GPIO Init }

LDR RO,=LEDS ;RO0=

0x4000703C ;

MOV RI1,#10 ;R1=10
MOVR2,# ;R2=9
MOVR3,# ;R3=5

MOV R4, #6  ; R4=6loop STR
R1,[R0] ;LEDS= 10

STRR2,[R0] ;LEDS=9

STRR3,[R0] ;LEDS=5
STRR4,[R0] ;LEDS=6
B loop

Program 3.5. C software for the LED output system.
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2.3. Phase-Lock-Loop

Normally, the execution speed of a microcontroller is determined by an external crystal. The Stellar
is EKK-LM3S1968 evaluation board has an 8 MHz crystal. The Texas Instruments Tiva
EKLM4F120XL, EK-TM4C123GXL, and EK-TM4C1294-XL boards have a 16 MHz crystal.
Most microcontrollers have a phase-lock-loop (PLL) that allows the software to adjust the
execution speed of the computer. Typically, the choice of frequency involves the tradeoff between
software execution speed and electrical power. In other words, slowing down the bus clock will
require less power to operate and generate less heat. Speeding up the bus clock obviously allows
for more calculations per second.

The default bus speed of the LM3S1968 and TM4C microcontrollers is that of the internal
oscillator, also meaning that the PLL is not initially active. For example, the default bus speed for
the LM3S1968 kit is 12 MHz £30%. The default bus speed for the TMA4C internal oscillator is 16
MHz £1%. The internal oscillator is significantly less precise than the crystal, but it requires less
power and does not need an external crystal. This means for most applications we will activate the
main oscillator and the PLL so we can have a stable bus clock.

There are two ways to activate the PLL. We could call a library function, or we could access the
clock registers directly. In general, using library functions creates a better design because the
solution will be more stable (less bugs) and will be more portable (easier to switch
microcontrollers).

First, we can include the Stellaris/Tiva library and call the SysCtlIClockSet function to change the
speed. This function is defined in the sysctl.c file. Assume we wish to run an LM3S with an 8
MHz crystal at 50 MHz. The desired bus speed is set by the SYSCTL_SYSDIV_4 parameter,
which in this case will be 200 MHz divided by 4. The library function activates the PLL because
of the SYSCTL_USE_PLL parameter. The main oscillator is the one with the external crystal
attached. The last parameter specifies the frequency of the attached crystal.

SysCtlClockSet (SYSCTL_SYSDIV_ 4| SYSCTL_USE_PLL |

SYSCTL_OSC_MAIN | SYSCTL_XTAL_8MH2Z);

Assume we wish to run an LM3S microcontroller with a 6 MHz crystal at 20 MHz. The divide by
10 reduces the 200 MHz base frequency to 20 MHz.

SysCtlClockSet( SYSCTL_SYSDIV_10 | SYSCTL_USE_PLL |

SYSCTL_OSC_MAIN | SYSCTL_XTAL_6MHZ);
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Assume we wish to run an TM4C with a 16 MHz crystal at 80 MHz. The divide by 2.5 creates a
bus frequency of 80 MHz, implemented as 400 MHz divided by 5.
SysCtlClockSet( SYSCTL_SYSDIV_2 5| SYSCTL_USE_PLL |

SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);
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Figure 3.23. Block diagram of the main clock tree on the TM4C123 including the PLL.

To make our code more portable, it is a good idea to use library functions whenever possible.
However, we will present an explicit example illustrating how the PLL works. An external crystal
is attached to the TM4C microcontroller, as shown in Figure 3.23. The PLLs on the other Stellari
s/ Tiva microcontrollers operate in the same basic manner. Table 3.9 shows the clock registers
used to define what speed the processor operates. The output of the main oscillator (Main Osc) is
a clock at the same frequency as the crystal. By setting the OSCSRC bits to 0, the multiplexer
control will select the main oscillator as the clock source.

Program 3.6 shows a program to activate a microcontroller with a 16 MHz main oscillator to run
at 80 MHz. 0) Use RCC2 because it provides for more options. 1) The first step is set BYPASS2
(bit 11). At this point the PLL is bypassed and there is no system clock divider. 2) The second step
is to specify the crystal frequency in the four XTAL bits using the code in Table 3.9. The
OSCSRC2 bits are cleared to select the main oscillator as the oscillator clock source. 3) The third
step is to clear PWRDN2 (bit 13) to activate the PLL. 4) The fourth step is to configure and enable
the clock divider using the 7-bit SYSDIV?2 field. If the 7-bit SYSDIV?2 is n, then the clock will be
divided by n+1. To get the desired 80 MHz from the 400 MHz PLL, we need to divide by 5. So,
we place a 4 into the SYSDIV?2 field. 5) The fifth step is to wait for the PLL to stabilize by waiting
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for PLLRIS (bit 6) in the SYSCTL_RIS_R to become high. 6) The last step is to connect the PLL
by clearing the BYPASS2 bit. To modify this program to operate on other microcontrollers, you
will need to change the crystal frequency and the system clock divider. Program 3.6 is on the book

web site as PLL_xxx.zip.

XTAIL Crystal Freq XTAL Crysal Freq
(MHz) (MHz)
0x0 Reserved T 0x10 10.0 MHz
0x1 Reserved S 12.0 MHz
0x2 Reserved 0x12 12,288 MHz
0x3 Reserved T 0x13 13.56 MHz
0x4 3.579545 MHz 0x14  14.31818 MHz
0x5 3.6864 MHz 0x15 160 MHz
0x6 4 MHz T 0x16  16.384 MHz
0x7 $.096 MH2z 0x17 18,0 MHz
0x8 49152MHz  0x18  20.0 MHz
0x9 5 MHz T 0x19 24.0MHz
OxA 5.12 MHz Ox1A 25.0 MHz
0xB 6 MHz (reset "~ (0xIB  Reserved
value)
OxC 6.144 MHz T OxIC Reserved
0xD 7.3728 MHz 0xID  Reserved
OxE 8 MHz " OxIE  Reserved
OxF 8.192 MHz " O0xIF  Reserved

Table 3.9a. XTAL field used in the SYSCTL_RCC_R register of the TM4C123.

Address 26-23 22 13 11 10-6 5-4 Name

$400FE060 SYSDIV USESYSDIV PWRDN BYPASS XTAL OSCSRC SYSCTL RCC R

$400FE0S0 PLLERIS SYSCTL RIS R
31 30 28-22 13 11 6-4

$400FE070 TUSERCC2 DIV400 SYSDIVZ PWRDN2 BYPASSZ OSCSRC2 SYSCTL RCCI R

Table 3.9b. Main clock registers for the TM4C123.

#define SYSDIV2 4

void PLL_Init(void){

/1 0) Use RCC2

SYSCTL_RCC2_R |= 0x80000000; // USERCC2

//'1) bypass PLL while initializing

SYSCTL_RCC2_R |= 0x00000800; // BYPASS2, PLL bypass

I 2) select the crystal value and oscillator source

SYSCTL_RCC_R = (SYSCTL_RCC_R & ~0x000007C0) // clear bits 10-6
+ 0x00000540; // 10101, configure for 16 MHz crystal

SYSCTL_RCC2_R &= ~0x00000070; // configure for main oscillator source
/I 3) activate PLL by clearing PWRDN

SYSCTL_RCC2_R &= ~0x00002000;

Il 4) set the desired system divider

SYSCTL_RCC2_R |= 0x40000000; // use 400 MHz PLL
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SYSCTL_RCC2_R = (SYSCTL_RCC2_R&~0x1FC00000)+(SYSDIV2<<22); // 80 MHz
/1'5) wait for the PLL to lock by polling PLLLRIS
while((SYSCTL_RIS_R&0x00000040)==0){}; // wait for PLLRIS bit

/1 6) enable use of PLL by clearing BYPASS

SYSCTL_RCC2_R &= ~0x00000800;

}
Program 3.6a. Activate the TM4C123 with a 16 MHz crystal to run at 80 MHz (PLL_xxx.zip).

4.4. SysTick Timer

SysTick is a simple counter that we can use to create time delays and generate periodic interrupts.
It exists on all Cortex -M microcontrollers, so using SysTick means the system will be easy to port
to other microcontrollers. Table 3.10 shows some of the register definitions for SysTick. The basis
of SysTick is a 24-bit down counter that runs at the bus clock frequency. There are four steps to
initialize the SysTick timer. First, we clear the ENABLE bit to turn off SysTick during
initialization. Second, we set the RELOAD register. Third, we write to the
NVIC_ST_CURRENT _R value to clear the counter. Lastly, we write the desired mode to the
control register, NVIC_ST _CTRL_R . We set the CLK_SRC bit specifying the core clock will
be used. We must set CLK _SRC=1, because CLK SRC=0 external clock mode is not
implemented on the LM3S/TM4C family. We will set INTEN to enable interrupts, but in this first
example we clear INTEN so interrupts will not be requested. We need to set the ENABLE bit so
the counter will run. When the CURRENT value counts down from 1 to 0, the COUNT flag is
set. On the next clock, the CURRENT is loaded with the RELOAD value. In this way, the
SysTick counter (CURRENT) is continuously decrementing. If the RELOAD value is n, then the
SysTick counter operates at modulo n+1 (...n,n-1,n-2 ... 1,0, n,n- 1 ...). In other words, it rolls
over every n+1 counts. The COUNT flag could be configured to trigger an interrupt. However, in

this first example interrupts will not be generated.

Address 31- 23- 16 15-3 2 1 0 Name

24 17
$EQOOE0I0 O 0 COUNT 0 CLK SRC INTEN ENABLE NVIC ST CTRL R
$EOOOEO14 O 24-bit RELOAD value NVIC_ST RELOAD R
$EOOOEOIS 0 24-bit CURRENT value of SysTick counter NWVIC ST CURRENT R

Table 3.10. SysTick registers.
If we activate the PLL to run the microcontroller at 80 MHz, then the SysTick counter decrements

every 12.5 ns. In general, if the period of the core bus clock is t, then the COUNT flag will be set

54



every (n+1) t. Reading the NVIC_ST_CTRL_R control register will return the COUNT flag in
bit 16 and then clear the flag. Also, writing any value to the NVIC_ST_CURRENT _R register
will reset the counter to zero and clear the COUNT flag.

Program 3.7 uses the SysTick timer to implement a time delay. For example, the user calls
SysTick_Waitl0ms (123); and the function returns 1.23 seconds later. The RELOAD register is
set to the number of bus cycles one wishes to wait. If the PLL function of Program 3.6 has been
executed, then the units of this delay will be 12.5 ns. Writing to CURRENT will clear the counter
and will clear the count flag (bit 16) of the CTRL register. After SysTick has been decremented
delay times, the count flag will be set and the while loop will terminate. Since SysTick is only 24
bits, the maximum time one can wait with SysTick_Wait is 224*12.5ns, which is about 200 ms.
To provide for longer delays, the function SysTick_Wait10ms calls the function SysTick_Wait
repeatedly. Notice that 800,000*12.5ns is 10ms.

void SysTick_Init(void){

NVIC_ST _CTRL_R =0; // 1) disable SysTick during setup

NVIC_ST RELOAD_R = 0x00FFFFFF; // 2) maximum reload value
NVIC_ST_CURRENT_R = 0; // 3) any write to current clears it
NVIC_ST_CTRL_R =0x00000005; // 4) enable SysTick with core clock
}

/I The delay parameter is in units of the 80 MHz core clock. (12.5 ns)
void SysTick_Wait(uint32_t delay){

NVIC_ST _RELOAD_R = delay-1; // number of counts to wait
NVIC_ST_CURRENT_R = 0; // any value written to CURRENT clears
while((NVIC_ST_CTRL_R&0x00010000)==0){ // wait for count flag

}

}// 10000us equals 10ms

void SysTick_Wait10ms(uint32_t delay){

uint32_ti;

for(i=0; i<delay; i++){

SysTick_Wait(800000); // wait 10ms

}

}

Program 3.7a. Timer functions that implement a time delay (SysTick_xxx.zip).
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